Part Number Hot Search : 
STPS1 1H471 2N5682 LVR012S L2006V5 TN3015 TDA7407D P6N80
Product Description
Full Text Search
 

To Download BRIDGED-RB-TA3020 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
BRIDGED RB-TA3020-1, BRIDGED RB-TA3020-2, BRIDGED RB-TA3020-3
CLASS-T DIGITAL AUDIO AMPLIFIER EVALUATION BOARD USING DIGITAL POWER PROCESSING (DPP T M ) TECHNOLOGY
Technical Information-Preliminary Revision 1.0 - June 2001
GENERAL DESCRIPTION
The Bridged RB-TA3020 evaluation board is based on the TA3020 digital audio power amplifier from Tripath Technology. This board is designed to provide a simple and straightforward environment for the evaluation of the Tripath TA3020 amplifier in bridged mode. This board is implemented in a bridged configuration for high power mono output. Note: There are three versions of the Bridged RB-TA3020, depending on nominal supply voltage and desired output power. Bridged RB-TA3020-1 - Nominal supply voltage +/-23V to +/-36V Bridged RB-TA3020-2 - Nominal supply voltage +/-30V to +/-48V Bridged RB-TA3020-3 - Nominal supply voltage +/-40V to +/-64V
FEATURES BENEFITS
Bridged RB-TA3020-1: 300W continuous output power @ 0.1% THD+N, 4, +30V Bridged RB-TA3020-2: 600W continuous output power @ 0.1% THD+N, 4, +43V Bridged RB-TA3020-3: 1200W continuous output power @ 0.1% THD+N, 4, +60V Outputs short circuit protected
Quick, easy evaluation and testing of the TA3020 amplifier in bridged mode Uses only N-channel power MOSFETs Ready to use in many applications: o Car Audio Amplifier o Powered Subwoofers o High Power Mono Amplifier
1
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
OPERATING INSTRUCTIONS
Power Supply Description
There are four external power supplies required to operate this board: VPP, VNN, VN10, and V5 (see Figures 1 and 2). VPP and VNN power the load and so must each be able to provide half of the desired output power, plus about 20% for overhead and margin. The TA3020 amplifier also requires a supply, VN10, that is 10V more positive than VNN and tracks VNN. Though not required, the following powering-up sequence is usually adhered to during bench evaluations: 1st) V5 and VN10, 2nd) VNN and 3rd) VPP (refer to the Turn-on/off Pop section). The positive and negative supply voltages do not have to match or track each other, but distortion or clipping levels will be determined by the lowest (absolute) supply voltage. Figure 1 shows the proper supply configuration for the EB-TA3020.
VPP (yellow) V5 (red) VS 5V
AGND (black) PGND (blue) VS 10V VNN (orange) VN10 (green)
Note: To avoid signal degradation, the Analog Ground and Power Ground should be kept separate at the power supply. They are connected locally on the Bridged RB-TA3020-X. The two VPP yellow wires should be tied together and the two VNN orange wires should also be tied together.
Connector J2 (Yellow) J2 (Blue) J2 (Orange) J2 (Orange) J2 (Green) J2 (Yellow) J1 (Red) J1 (Black) VPP PGND VNN VNN VN10 VPP V5 AGND Table 1
Power Supply
2
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
Input Connections
Audio input to the board is located at INPUT (J200) (see Figures 2 and 3). The input can be a test signal or music source. An RCA cable is provided with a female 100mil connector to mate with J200.
Output Connections
There are two output connectors on the reference board for the speaker output. The positive output is connected to J101 with a red wire attached. The negative output is connected to J202 with a black wire attached. The negative output is not a ground, but an output signal with equal amplitude and opposite phase compared to the positive output. Outputs can be any passive speaker(s) or test measurement equipment with resistive load (see Application Note 4 for more information on bench testing).
Turn-on/off Pop
To avoid turn-on pops, bring the mute from a high to a low state after all power supplies have settled. To avoid turn-off pops, bring the mute from a low to a high state before turning off the supplies. The only issue with bringing up the V5 last, or turning it off first, is clicks/pops. If the mute line is properly toggled (slow turn-on, quick turn-off), then any power up sequence is acceptable. In practice, the V5 will usually collapse before VPP and VNN. The same holds true for the VN10 supply. It can collapse before VPP or VNN though this may cause a larger turn-off pop than if the mute had been activated before either the VN10 or V5 supply have collapsed. No damage will occur to the TA3020 if either the V5 or VN10 collapse before VPP or VNN.
3
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
EB-TA3020 BOARD
Output Transistors
Positive Output (red) Offset Adjustment Power In VPP (yel) PGND (blu) VNN (org) VNN (org) VN10 (grn) VPP(yel)
V5 (red) AGND (blk) Input Connector Break Before Make Jumpers
Negative Output (blk)
Mute Jumper
Output Transistors
Figure 2
4
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
M103
M101
M100
C109
C113
Positive Output
C111
L100
Offset Adjust
M102
-+
-+
VPP
AGND V5
VPP PGND VNN VNN VN10 VPP
-+
VNN
Tripath TA3020
AGND Input BBM1 BBM0 MUTE
Negative Output
10V
C213
M203
M201
C209
M200
L200
Figure 3
5
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
M202
Audio Source
C211
5V
-+
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
ELECTRICAL CHARACTERISTICS FOR BRIDGED RB-TA3020-1
Unless otherwise specified, f = 1kHz, Measurement Bandwidth = 22kHz, RL = 4, TA = 25 C. All of the measurements are typical value.
SYMBOL PO PARAM ETER Output Power (Continuous Average/bridged load) Bridged RB-TA3020-1 +/-30V power supplies Switching Frequency of the Positive Output Switching Frequency of the Negative Output Quiescent Current of VN10 supply Quiescent Current of V5 supply Quiescent Current of VPP supply Quiescent Current of VNN supply Power Efficiency Power Efficiency Output Noise Voltage CONDITIONS THD+N = 0.1% THD+N = 10% VIN = 0 V VIN = 0 V VIN = 0 V VIN = 0 V VIN = 0 V VIN = 0 V +/- 30V, POUT = 500W, RL = 4 +/- 30V, POUT = 850W, RL = 2 A-Weighted, input AC grounded RL = 4 RL = 2 RL = 4 RL = 2 VALUE 350W 600W 500W 850W 650kHz 620kHz 180mA 45mA 100mA 100mA 89% 83% 215uV
+Freqsw -Freqsw VN10Iq V5Iq VPPIq VNNIq eOUT
ELECTRICAL CHARACTERISTICS FOR BRIDGED RB-TA3020-2
Unless otherwise specified, f = 1kHz, Measurement Bandwidth = 22kHz, RL = 4, TA = 25 C. All of the measurements are typical value.
SYMBOL PO PARAM ETER Output Power (Continuous Average/bridged load) Bridged RB-TA3020-2 +/-43V power supplies Output Power (Continuous Average/bridged load) Bridged RB-TA3020-2 +/-33V power supplies Switching Frequency of the Positive Output Switching Frequency of the Negative Output Quiescent Current of VN10 supply Quiescent Current of V5 supply Quiescent Current of VPP supply Quiescent Current of VNN supply Power Efficiency Power Efficiency Output Noise Voltage CONDITIONS THD+N = 0.1% THD+N = 10% THD+N = 0.1% THD+N = 10% VIN = 0 V VIN = 0 V VIN = 0 V VIN = 0 V VIN = 0 V VPP = +43V VNN = -43V VIN = 0 V VPP = +43V VNN = -43V +/- 43V, POUT = 1000W, RL = 4 +/- 33V, POUT = 900W, RL = 2 A-Weighted, input AC grounded RL = 4 RL = 2 RL = 4 RL = 2 RL = 2 VALUE 710W 950W 1000W 650W 900W 640kHz 605kHz 270mA 45mA 110mA 110mA 88% 83% 300uV
PO
+Freqsw -Freqsw VN10Iq V5Iq VPPIq VNNIq eOUT
6
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
ELECTRICAL CHARACTERISTICS FOR BRIDGED RB-TA3020-3
Unless otherwise specified, f = 1kHz, Measurement Bandwidth = 22kHz, RL = 4, TA = 25 C. All of the measurements are typical value.
SYMBOL PO PARAM ETER Output Power (Continuous Average/bridged load) Bridged RB-TA3020-3 +/-60V power supplies Output Power (Continuous Average/bridged load) Bridged RB-TA3020-3 +/-43V power supplies Switching Frequency of the Positive Output Switching Frequency of the Negative Output Quiescent Current of VN10 supply Quiescent Current of V5 supply Quiescent Current of VPP supply Quiescent Current of VNN supply Power Efficiency Power Efficiency Output Noise Voltage CONDITIONS THD+N = 0.1% THD+N = 10% THD+N = 0.1% THD+N = 10% VIN = 0 V VIN = 0 V VIN = 0 V VIN = 0 V VIN = 0 V VPP = +60V VNN = -60V VIN = 0 V VPP = +60V VNN = -60V +/- 60V, POUT = 1800W, RL = 4 +/- 43V, POUT = 1200W, RL = 2 A-Weighted, input AC grounded RL = 4 RL = 4 RL = 2 RL = 2 VALUE 1350W 1800W 1350W 1500W 630kHz 600kHz 290mA 45mA 130mA 140mA 87% 84% 400uV
PO
+Freqsw -Freqsw VN10Iq V5Iq VPPIq VNNIq eOUT
7
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
TYPICAL PERFORMANCE FOR BRIDGED RB-TA3020-1
THD+N vs Output Power
10 5 2 1 0.5
f = 1kHz BBM = 80nS Vs= +/- 30V RLoad = 4 BW = 22Hz - 22kHz
THD+N vs Output Power
10 5 2 1
f = 1kHz BBM = 80nS Vs = +/-30V RLoad = 2 BW = 22Hz - 22kHz
THD+N (%)
THD+N (%)
0.2 0.1 0.05 0.02 0.01 0.005
0.5 0.2 0.1 0.05 0.02
0.002 0.001
0.01
1 2 5 10 20 Output Power (W) 50 100 200 500
1
2
5
10
20 50 Output Power (W)
100
200
500
1k
THD+N vs Frequency
10 5 2 1 0.5 THD+N (%)
THD+N (%)
BBM = 80nS Vs= +/- 30V Pout = 150W RLoad = 4 BW = 20Hz - 20kHz
10 5 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002
BBM = 80nS Vs = +/-30V Pout = 150W RLoad = 2 BW = 22Hz - 22kHz
THD+N vs Frequency
0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 1k Frequency (Hz) 2k 5k 10k 20k
0.001 20
50
100
200
500 1k Frequency (Hz)
2k
5k
10k
20k
Efficiency vs Output Power
100 90 80 70
Efficiency vs Output Power
100.00 90.00 80.00 70.00
Efficiency (%)
f = 1kHz BBM = 80nS Vs = +/- 30V Rload = 4
Efficiency (%)
60 50 40 30 20 10 0 0 50 100 150 200 250 300 350 400 450 500 550 600 650 Output Power (W)
60.00 50.00 40.00 30.00 20.00 10.00 0.00 0 100 200 300 400 500 600 700 800 900 1000 Output Power (W)
f= 1kHz BBM = 80nS Vs = +/-30V Rload = 2
8
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
TYPICAL PERFORMANCE FOR BRIDGED RB-TA3020-2
THD+N vs Output Power
10 5 2 1 0.5
f = 1kHz BBM = 120nS Vs = +/- 43V RLoad = 4 BW = 22Hz-22kHz
THD+N vs Frequency
10 5
f = 1kHz BBM = 120nS Vs= +/- 43V RLoad = 2 BW = 22Hz - 22kHz
2 1
THD + N (%)
THD+N (%)
1 2 5 10 20 50 100 200 500 1k 2k
0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001
0.5 0.2 0.1 0.05 0.02 0.01 1 2 5 10 20 50 100 Output Power (W) 200 500 1k 2k
Output Power (W)
THD+N vs Frequency
10 5 2 1 0.5
BBM = 120nS Vs= +/- 43V Pout = 200W RLoad = 4 BW = 22Hz - 22kHz
THD+N vs Frequency
10 5 2 1 0.5
BBM = 120nS Vs= +/- 43V Pout = 200W RLoad = 2 BW = 22Hz - 22kHz
THD+N (%)
0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 1k Frequency(Hz) 2k 5k 10k 20k
THD+N (%)
0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 1k Frequency (Hz) 2k 5k 10k 20k
Efficiency vs Output Power
100 90 80 70 90 80 70 60
Efficiency vs Output Power
Efficiency (%)
Efficiency (%)
60 50 40 30 20 10 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 Output Power (W)
f = 1kHz BBM = 120nS Vs = +/-43V Rload = 4
50 40 30 20 10 0 0 100 200 300 400 500 600 700 800 900 1000 Output Power (W)
f = 1kHz BBM = 120nS Vs = +/- 43V Rload = 2
9
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
TYPICAL PERFORMANCE FOR BRIDGED RB-TA3020-2
THD+N vs Output Power
10 5 f = 1kHz BBM = 120nS Vs= +/- 33V RLoad = 2 BW = 22Hz - 22kHz
10 5 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 BBM = 120nS Vs= +/- 33V Pout = 200W RLoad = 2 BW = 22Hz - 22kHz
THD+N vs Frequency
2 1
THD + N (%)
0.2 0.1 0.05
0.02 0.01 1
THD+N (%)
0.5
0.002
2
5
10
20 50 Output Power (W)
100
200
500
1k
0.001 20
50
100
200
500 1k Frequency (Hz)
2k
5k
10k
20k
Efficiency vs Output Power
90.00 80.00
70.00
60.00
Efficiency (%)
50.00
40.00
30.00
20.00
f = 1kHz BBM = 120nS Vs = +/- 33V Rload = 2
10.00
0.00 0.00
200.00
400.00
600.00
800.00
1000.00
Output Power (W)
10
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
TYPICAL PERFORMANCE FOR BRIDGED RB-TA3020-3
THD + N vs Output Power
10 5 2 1
f = 1kHz BBM = 120nS Vs = +/- 60V RLoad = 4 BW = 22Hz-22kHz
THD + N vs Output Power
10 5 2 1
f = 1kHz BBM = 120nS Vs = +/- 60V RLoad = 2 BW = 22Hz-22kHz
THD + N (%)
0.5 0.2 0.1 0.05 0.02 0.01 1 2 5 10 20 50 100 Output Power (W) 200 500 1k 2k
THD + N (%)
0.5 0.2 0.1
0.05 0.02 0.01 1 2 5 10 20 50 100 200 500 1k 2k
Output Power (W)
THD + N vs Frequency
10 5 2 1 0.5
BBM = 120nS Vs = +/- 60V Pout = 300W RLoad = 4 BW = 22Hz-22kHz
THD + N vs Frequency
10 5 2 1 0.5
BBM = 120nS Vs = +/- 60V Pout = 300W RLoad = 2 BW = 22Hz-22kHz
THD + N (%)
0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 1k 2k 5k 10k 20k
THD + N (%)
0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 20 50 100 200 500 1k Frequency (Hz) 2k 5k 10k 20k
Frequency (Hz)
Efficiency vs Output Power
100 90 80 70 Efficiency (%) 60 50 40 30 20 10 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Output Power (W)
f = 1kHz BBM = 120nS Vs = +/-60V Rload = 4
Efficiency vs Output Power
90 80 70 60
Efficiency (%)
50 40 30 20 10 0 0 200 400 600 800 1000 1200 1400 Output Power (W)
f = 1kHz BBM = 120nS Vs = +/- 60V Rload = 2
11
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
TYPICAL PERFORMANCE FOR BRIDGED RB-TA3020-3
THD+N vs Output Power
10 5 f = 1kHz BBM = 120nS Vs= +/- 43V RLoad = 2 BW = 22Hz - 22kHz
THD+N vs Frequency
10 5 BBM = 120nS Vs= +/- 43V Pout = 300W RLoad = 2 BW = 22Hz - 22kHz
2 1
2 1
THD+N (%)
0.5
THD+N (%)
2 5 10 20 50 Output Power (W) 100 200 500 1k 2k
0.5
0.2 0.1 0.05
0.2 0.1 0.05
0.02 0.01 1
0.02 0.01 20
50
100
200
500 1k Frequecy (Hz)
2k
5k
10k
20k
Efficiency vs Output Power
90.00 80.00
70.00
60.00
Efficiency (%)
50.00
40.00
30.00
20.00
f = 1kHz BBM = 120nS Vs = +/- 43V Rload = 2
10.00
0.00 0.00
200.00
400.00
600.00
800.00
1000.00
1200.00
1400.00
1600.00
Output Power (W)
12
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
Safe Operating Areas
The TA3020 must always remain in the safe operating area in order to ensure a robust and reliable design. The Bridged RB-TA3020-X boards have been optimized for 4 and 2 load applications. All three of the Bridged RB-TA3020-X boards have been designed to be 1 stable, however the current limit has been set by the OCR resistors (R111 and R211) to not allow the output to achieve maximum power in order to remain in the safe operating area. If a 1 load is connected to the output, the amplifier will continue to function but will go into an overcurrent mode when driving a presumable amount of power. For the Bridged RB-TA3020-1 board with a 1 load connected to the output, the amplifier will enter the overcurrent mode and shutoff at approximately 500W. For the Bridged RB-TA3020-2 board with a 1 load connected to the output, the amplifier will enter the overcurrent mode and shutoff at approximately 800W. For the Bridged RB-TA3020-3 board with a 1 load connected to the output, the amplifier will enter the overcurrent mode and shutoff at approximately 675W. To reset the amplifier after an overcurrent condition, the mute pin (pin 24) must be toggled or the power supplies must by cycled off and on to enable the amplifier. The Bridged RB-TA3020-1 is optimized for a +/-30V power supply and will function from a minimum of +/-23V to a maximum of +/-36V. At +/-30V the Bridged RB-TA3020-1 will sufficiently drive a 4 and 2 load as shown in the Typical Performance graphs. The Bridged RB-TA3020-2 is optimized for a +/-43V power supply and will function from a minimum of +/-30V to a maximum of +/-48V. At +/-43V the Bridged RB-TA3020-2 will sufficiently drive a 4 and 2 load as shown in the Typical Performance graphs. However with 2 load conditions the amplifier will shutdown if pushed beyond 1200W. In order for the amplifier to achieve the full output signal swing, the power supply must be reduced to +/- 33V. This will allow the amplifier to achieve 950W at 10% THD+N with a 2 load. The Bridged RB-TA3020-3 is optimized for a +/-60V power supply and will function from a minimum of +/-40V to a maximum of +/-64V. At +/-60V the Bridged RB-TA3020-3 will sufficiently drive a 4 and 2 load as shown in the Typical Performance graphs. However, with a 2 load, the amplifier will shutdown if pushed beyond 1500W. In order for the amplifier to achieve the full output signal swing, the power supply must be reduced to +/- 43V. This will allow the amplifier to achieve 1500W at 10% THD+N with a 2 load. These limitations placed on the amplifier are to ensure the system will remain in the safe operating area. Changing the values of the OCR resistors (R211 and R111) will change the overcurrent trip point and thus increase or reduce output power. It is not recommended to increase the overcurrent trip point to increase the output power, otherwise reliability will be reduced in the system. For formulas on how to set the overcurrent trip point, please refer to the TA3020 datasheet. The safe operating area is dependent upon the power dissipation, the operating ambient temperature and the heatsinking. As an example, if the Bridged RB-TA3020-3 board is operating at +/-60V with a 2 load. At 400W the amplifier is 68% efficient and the eight output FETs will be dissipating approximately 133W. Each of the output FETs will be dissipating approximately 17W. To operate at an ambient temperature of 20OC, the heatsink needs to be be able to keep the output FETS below the maximum junction temperature of 150OC. (Maximum Junction Temperature for Output FETs - ambient temperature)/Power dissipated = JA of the heatsink 150OC - 20OC = 130OC 130OC / 133W = 0.98OC/W
13
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
In order to run the amplifier at 400W into a 2 load continuously at 20OC for an infinite amount of time, a JA of 0.98OC/W heatsink is required. In an application such as a car audio trunk mounted amplifier, where the ambient temperature can run up to 85OC: 150OC - 85OC = 65OC 65OC / 133W = 0.49OC/W A JA of 0.49OC/W heatsink is required in order to operate the amplifier at 400W into a 2 load continuously at 85OC for an infinite amount of time. The JA of every heatsink indicates the thermal properties for an infinite amount of time, therefore a characterization of each heatsink should be done to plot the JA vs time. This will provide information for the heatsink characteristics for power dissipation capabilities for a given finite amount of time. A system fan can be used to help increase the efficiency of the heatsink. Additional FETs cannot be added to the RB-TA3020-2 and RBTA3020-3 boards to help the power dissipation because the TA3020 cannot reliably drive more than 150nC.
14
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
ARCHITECTURE
A block diagram of the evaluation board is shown in Figure 4. The major functional blocks of the amplifier are described below.
Positive Output In Input Stage TA3020-65 Output Section
Negative Output
Figure 4
Note: The negative output is identical to the positive output with 180 degrees phase shift.
Input Stage
Figure 5 shows Input Stage before the TA3020. The TA3020 amplifier is designed to accept unbalanced inputs. For the Bridged RB-TA3020-1, the gain is 12.2 V/V differentially, or approximately 22 dB. For the Bridged RB-TA3020-2, the gain is 16.8 V/V differentially, or approximately 24.5 dB. For the Bridged RB-TA3020-3, the gain is 23.8 V/V differentially, or approximately 27.5 dB. Please note that the input stage of the TA3020 is biased at approximately 2.5VDC. For an input signal centered at ground (0VDC), the polarity of the coupling capacitor, CIN, shown in Figure 5 is correct.
CIN 4.7uF +
RIN 49.9K
IN2
20
+
RF 20K
VP2
21
BIASCAP
19
CB 0.1uF
V5
499K 10K Pot 499K 0.1uF RF 20K
IN1 VP1 26
25
+ -
RIN1 20K
Figure 5
15
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
The audio signal is input through pin 20 and fed through an inverting op amp. The output of this op amp (pin 21) is tied to the input a unity gain inverting op amp. This configuration of cascading two inverting op amps results in two input signals to the amplifier of equal amplitude and 180 degrees phase shift without the need of an external op amp. The value of the input capacitor, CIN, in Figure 5 (labeled C200 on the schematic), and the input resistor, RIN (labeled R200 on the schematic), sets the -3dB point of the input high-pass filter. The frequency of the input high pass pole, F3dB, -3dB point can be calculated as follows: F3dB = 1/(2 x CIN x RIN ) where: CIN = input capacitor value in Farads RIN = input resistor value in Ohms Output offset voltages can be nulled by adjusting the 10k potentiometer shown in Figure 5. Once set, the offset does not typically drift with temperature, so no tracking circuitry is required. Offsets can typically be set to +/- 25 mV. The output offset is trimmed differentially across the positive and negative outputs, thus only one channel needs the offset trimmed. If a different TA3020 is placed in the Bridged RB-TA3020 evaluation board, the offset would need to be retrimmed.
EB-TA3020 Control Circuitry
The MUTE pin is brought out to an external 2-pin header, J3 (Figure 6). When a jumper is installed from Pin 1 to 2 of J3, the MUTE line is pulled to ground and the outputs are enabled. Note that if the MUTE jumper is removed, the MUTE pin floats high, and the amplifier is muted.
ROCR
OCR1 J3 MUTE
24
+5V R111 BBM0
22
33
J5
C116 31 R211
23
+5V BBM1 J4
AGND
OCR2
C216
Figure 6
The resistors, ROCR in Figure 6 (labeled R111 and R211 in the schematic), set the overcurrent threshold for the output devices. Note that these are NOT the sense resistors (the overcurrent sense resistors, RS, are in the output stage). By adjusting the ROCR resistor values, the threshold at which the amplifier "trips" can be changed. The range that the overcurrent trip point can be adjusted (by changing ROCR) is determined by the value of the sense resistors. ROCR on this evaluation board is pre-set for a 4 and 2 bridged load application. For lower impedance applications (i.e. 1 bridged), this board's overcurrent will trip. This is indicated by the amplifier going into mute and the HMUTE pin will latch to 5V; to clear this condition, toggle the mute or cycle the power. To reduce overcurrent sensitivity, decrease the value of ROCR until the sensitivity meets the desired level. R OCR can be reduced though this may result in an overcurrent threshold that is so high the amplifier will try to drive a short circuit, possibly damaging the output FETs.
16 Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
Finally, the Break-Before-Make (or "BBM") lines are used to control the "dead time" of the output FETs. The "dead time" is the period of time between the turn-off of one device and the turn-on of the opposite device on the same channel. If the two devices are both on at the same time, current "shoots through" from one supply to the other, bypassing the load altogether. Obviously, this will have a great impact on the overall efficiency of the amplifier. However, if the dead time is too long, linearity suffers. The optimum BBM setting will change with different output FETs, different operating voltages, different layouts and different performance requirements. For this reason, Tripath has provided a means to adjust the BBM setting among four preset levels by moving jumpers J2 and J3 on their 3-pin headers (see Figure 6). These settings should be verified over the full temperature and load range of the application to ensure that any thermal rise of the output FETs and TA3020 does not impact the performance of the amplifier. The RB-TA3020-1 and RBTA3020-2 amplifier boards is set to 80nS and the RBTA3020-3 is set to 120nS. The table below shows the BBM values for various settings of the jumpers (Figure 7). BBM1 1) 2) 3) 4) 0 0 1 1
J5 0
BBM0 0 1 0 1
J4
Delay 120nS 80nS 40nS 0nS
0
1 BBM0 BBM1
1
Note: The jumper setting shown is 80nS. Figure 7
Auto Recovery Circuit for Overcurrent Fault Condition
If an overcurrent fault condition occurs the HMUTE pin (pin 15) will be latched high and the amplifier will be muted. The amplifier will remain muted until the MUTE pin (pin 24) is toggled high and then low or the power supplies are turned off and then on again. The circuit shown below in Figure 8 is a circuit that will detect if HMUTE is high and then toggle the mute pin high and then low, thus resetting the amplifier. The LED, D1 will turn on when HMUTE is high. The reset time has been set for approximately 2.5 seconds. The duration of the reset time is controlled by the RC time constant set by R306 and C311. To increase the reset, time increase the value of C311. To reduce the reset time, reduce the value of C311. Please note that this circuit is optional and in not included on the RB-TA3020-X boards.
17
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
V5 R309 1k, 5%
D1 R311 LED 1k, 5% R311 1k, 5% R311 1k, 5%
R306 510k, 5%
R307 10k, 5%
R308 10k, 5%
Q305 2N3906 MUTE Pin 24
HMUTE Pin 15
C311 10uF, NP Q302 2N3904
Q303 2N7002 Q304 2N3904 R310 1k, 5%
Jumper remove jumper to enable mute
AGND
Figure 8
Output Section
The output section includes the gate resistors, gate diodes, source resistors, FETs, output filters, the previously mentioned overvoltage sense resistors, a Zobel Network, the common mode capacitor, the common mode zobel network and various bypass capacitors. Figure 8 below shows the output stage of the positive output of this amplifier. The negative output section was not included in order to simplify the explaination of the output section. The negative output section will be symmetrical in terms of component values, component placements, and overall functionality.
OCS1HN OCS1HP
D104 R113 R118 499k 5.6 R124 D105 R114 R119 499k 5.6 R125 5.6 D106 R120 5.6 R126 D107 R121 5.6 R127 5.6 5.6 M103 M102 5.6 M101 M100
R115 0.01
VPP
HO1 HO1COM
C108 0.1uF
C109 330uF
C110 0.1uF
C111 330uF
LO1 LO1COM
L100 11uH
AMPOUT 1 C117 0.22uF R128 20
C114 0.1uF
R115 0.01
VNN
C112 0.1uF OCS1LN OCS1LP
C113 330uF
Figure 9
18
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
The gate resistors (labeled R113, R114, R120, and R121 in Figure 9 and the attached schematic) are used to control MOSFET switching rise/fall times and thereby minimize voltage overshoots. They also dissipate a portion of the power resulting from moving the gate charge each time the MOSFET is switched. If RG is too small, excessive heat can be generated in the driver. Large gate resistors lead to slower gate transitions resulting in longer rise/fall times and thus requiring a larger BBM setting. The gate diodes (D104, D105, D106, D107) are used to reduce the fall time at the gate of the output FETs. This allows us to use the 5.6 gate resistor, which increases the rise time of the gate, reduces switching noise at the output FETs and reduce the overall noise floor of the amplifier. The source resistors (R124, R125, R126, R127) are recommended to protect the TA3020 from any overvoltage damage. The source resistors provide protection to the HO1COM and LO1COM pins due to the large overshoots and undershoots of the switching waveform that can occur at the output during high power operation. R118 and R119 are gate pull down resistors to ensure the output FETs remain off if VPP and VNN are powered on and the TA3020 is not powered on. 499k is the ideal value for these resistors. Larger values of R118 and R119 can cause the gate of the output FETs to float and smaller values of R118 and R119 will affect the drive capabilities of the HO1 and LO1 pins. The output FETs (M100, M101, M200 and M201) provide the switching function required of a Class-T design. They are driven directly by the TA3020 through the gate resistors. M100 and M102 are placed in parallel and provide the high side drive of the output stage. M101 and M103 are in parallel and provide the low side drive of the output stage. The FETs are required to be placed in parallel for the purposes of higher current handling capability and improved power dissipation. (Note: Bridged RBTA3020-1 does not have M101 and M103 and it's associated components because it has a lower power output) The devices used on the evaluation board are STW34NB20 MOSFETs. The TA3020 data sheet contains information on output FET selection as well as Tripath application notes "FETs - Selection and Efficiency" and "Designing with Switching Amplifiers for Performance and Reliability". The output filter L100/C114 is the low-pass filter that recovers the analog audio signal. One of the benefits of the Class-T design is the ability to use output filters with relatively high cutoff frequencies. This greatly reduces the speaker interactions that can occur with the use of lowerfrequency filters common in Class-D designs. Also, the higher-frequency operation means that the filter can be of a lower order (simpler and less costly). The OEM may benefit from some experimentation in the filter design, but the values provided in the reference design, 11uH, 0.1uF, 0.22uF (nominal resonant frequency of 65kHz), provide excellent results for most loads between 2 and 4. Figure 10 below shows the SPICE simultion results for the output filter used on the Bridged RB-TA3020-3 board with a 4 load. Figure 11 below shows the SPICE simulation results for the output filter used on the Bridged RB-TA3020-3 board with a 2 load. The Y axis of the graph is in units of dB referred to 1V. The X axis of the graph is in units of Hz. All of the Bridged RB-TA3020-X boards will have the same frequency response, however the gains will be different.
19
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
Figure 10
Figure 11
As important as the values themselves, the material used in the core is important to the performance of the filter. Core materials that saturate easily will not provide acceptable distortion or efficiency figures. Tripath recommends a low-mu core, like type 2 iron powder core. Micrometals, (www.micrometals.com), is a main supplier of iron powder cores. The core part number used on the Bridged RB-TA3020-1 and the Bridged RB-TA3020-2 is T106-2. The core part number used on the Bridged RB-TA3020-3 is T157-2. The Zobel circuit R128/C117 is used in case the amplifier is powered up with no load attached. The Q of the LC output filter, with no load attached, rises quickly out to 80kHz. Resonant currents
20 Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
in the filter and ringing on the output could reduce the reliability of the amplifier. The Zobel eliminates these problems by reducing the Q of the network significantly above 50kHz. Modifying the LC output filter will require a recalculation of the Zobel value, and depending on the application, the power capability of R117 and R217 may need to be increased to 10W from 5W. The components used on the evaluation board should be adequate for most applications.
C5 0.22uF AMPOUT 2 AMPOUT 1
R6 20, 5W
Figure 12
C6 0.22uF
Figure 12 shows the differential filter network. The differential capacitor, C5, is used to reduce any of the differential switching components between the positive and negative outputs. Similar to the zobel circuit, the common mode zobel network, is used in case the amplifier is powered up with no load attached to the output. The common mode LC output filter formed by L100, L200 and C5 has a Q that rises quickly out to 80kHz. Common mode resonant currents in the filter and ringing on the output could reduce the reliability of the amplifier. This common mode zobel network reduces the Q of the common mode LC output filter significantly above 50kHz. The bypass capacitors C108/C109 are critical to the reduction of ringing, overshoots, and undershoots on the outputs of the FETs. These parts are placed as closely as possible to the leads of the FETs, and the leads of the capacitors themselves are as short as practical. Their values will not change with different output FETs.
Differences between the Bridged RB-TA3020-X boards
The Bridged RB-TA3020-X boards can be directly implemented into a system. They were intended to be scalable and modular to help simplify the manufacturing of multiple systems with varying output power. This is the reason there are three boards for three different power levels that use identical PC boards. The differences between the three boards are changes in resistor values and capacitor voltages. Please refer to the bill of materials that is attached at the end of this document for the actual values of components used for each board.
DOCUMENTATION
Schematics and layout in software or paper form can be provided upon request.
21
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
Tr i path Technol ogy, I nc. - Techni cal I nfor m ati on
ADVANCED INFORMATION This is a product in development. Tripath Technology, Inc. reserves the right to make any changes without further notice to improve reliability, function and design. Tripath and Digital Power Processing are trademarks of Tripath Technology, Inc. Other trademarks referenced in this document are owned by their respective companies. Tripath Technology, Inc. reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Tripath does not assume any liability arising out of the application of use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. TRIPATH'S PRODUCT ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN CONSENT OF THE PRESIDENT OF TRIPATH TECHONOLOGY, INC. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in this labeling, can be reasonably expected to result in significant injury of the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
2.
Contact Information
TRIPATH TECHNOLOGY, INC 2560 Orchard Parkway, San Jose, CA 95131 408.750.3000 - P 408.750.3001 - F For more Sales Information, please visit us @ www.tripath.com/cont_s.htm For more Technical Information, please visit us @ www.tripath.com/data.htm
22
Bridged RB-TA3020-1-3 - MC/1.0/06-01, EAD003
1
2
3
4
5
6
D
VPP
D R215 0.01OHM/1W C210 C208 0.1uF/250V/EF 0.1uF/250V/EF M200 NS D204 NS R213 NS 2 R224 J202 M201 STW34NB20 CON4 5.6OHM/1W FB2 R225 L200 11uH AMPOUT2 C217 0.22uF/100V/PPS 2 C214 0.1uF/100V/PPS 1 C206 0.1uF/250V/EB 7 OCS2LP OCS1LP 42 C106 0.1uF/250V/EB 8 C205 0.1uF/250V/EB 9 C204 47uF/25V 220OHM C203 0.1uF D202 MURS120T3 10 VBOOT2 VNN 39
VNN
VNN C8 100uF/16V VN10 I1 1 VN10 LO1 48 R113 C107 0.1uF LO2 LO1COM 47 R124 3 LO2COM HO1COM 46 R118 510K 4 R218 510K 5 HO2 OCS1HN 44 R125 C105 0.1uF/250V/EB 6 OCS2LN OCS1HP 43 5.6OHM/1W 1 L100 11uH HO2COM HO1 45 NS D105 1N914 R114 CON4 5.6OHM/1W FB1 J102 M101 STW34NB20 R119 510K NS D104 NS M100 NS
R115 0.01OHM/1W C108 0.1uF/250V/EF
VPP
C211 390uF/50V
C110 0.1uF/250V/EF
C111 390uF/50V
R219 C207 510K 0.1uF
NS D205 1N914 R214
5.6OHM/1W
2
AMPOUT1 C114 0.1uF/100V/PPS C117 0.22uF/100V/PPS
M202 STW34NB20
D206 1N914 R220 5.6OHM/1W R212
D106 1N914 R120 R112 5.6OHM/1W D102 MURS120T3 C103 0.1uF 220OHM C104 47uF/25V
M102 STW34NB20
R228 20OHM/5W PGND2
OCS2HP
OCS1LN
41
R128 20OHM/5W PGND1
R226 C M203 NS 5.6OHM/1W D207 NS R221 C209 330uF/100V NS R227 NS R106 FB1 C212 0.1uF/250V/EF 7.5K,1% C102 150pF
OCS2HN
VBOOT1
40
R126 5.6OHM/1W D107 NS R121 C M103 NS
V5
11 AGND OCRNT2 12
NC
NC
38 AGND
NS R127 NS OCRNT1
VNN
R216 0.01OHM/1W
C109 330uF/100V
R105 1K,1%
R116 0.01OHM/1W
VNN
C213 390uF/50V
OCR2
OCR1
37
R107 1.15K,1%
C112 0.1uF/250V/EF
FN1
C113 390uF/50V
13
FBKOUT1
NC
36 AGND
AGND
14
FBKGND1
V5
35
V5
BRIDGED OUTPUT C3 0.1uF C5 AMPOUT2 AGND J201 SCRWTERM OCRNT1 C116 220pF R111 13.3K,1% 20OHM/5W 0.22uF/100V/PPS 0.22uF/100V/PPS R6 C6 AMPOUT1 J101 SCRWTERM
HMUTE
V5
15
HMUTE
DGND
34
R206 FB2 7.5K,1% C202 270pF R209 PGND2 B 7.5K,1%
R205 1K,1%
FN2
16
FBKOUT2
OCR1
33
17 R207 1.15K,1% R208 1K,1% AGND
FP2
DCOMP
REF1
32
R1 8.25K,1% AGND
AGND OCRNT2 C216 220pF R211 13.3K,1%
VNN
18
FBKGND2
OCR2
31
R210 1.15K,1% AGND C200 J200 AGND 4.7uF
B R3 237K,1%
C4 0.1uF
19
BIASCAP
VNNSENSE
30 AGND
R200 49.9K,1%
AGND
IN2
20
INV2
VPPSENSE
29
VPP
R201 20K,1%
C201 33pF
VP2 21
R5 261K,1% OAOUT2 AGND 28 C1 AGND 0.1uF 22 BBM0 V5 27
V5
R9 715K,1%
VPP VN10 VNN
J2
J5 SET BBM0 T0 1 J4 SET BBM1 T0 0 R7 1K J3 MUTE REMOVE J3 SHUNT TO ENABLE MUTE
V5
R4 261K,1%
V5
CON6
23
BBM1
OAOUT1
26 C101 33pF R101 20K,1%
5V INPUT CONNECTOR J1 V5 R100 20K,1%
VP2
24
MUTE TA3020
INV1
25
IN1
AGND
AGND
L1 FBEAD 1 2
R103 510K
R102 510K C120 0.1uF
V5
OFFSET TRIM R104 10K POT
AGND
A
AGND
A
Title
TA3020 BRIDGED REFERENCE BOARD - 1 - 23V TO 36V
Size C Date: File: 1 2 3 4 5 12-Jul-2001 Sheet of C:\LAYOUTS\TA3020\3020SUB3\BR3020_1.SCH By: Drawn 6 Number Revision
3.0
C:\LAYOUTS\TA3020\3020SUB3\BR3020_1.BOM 11:13:42 12-Jul-2001
Bill of Material for Bridged RB-TA3020-1, Rev 3.0 Used ==== 4 8 2 4 6 4 3 1 1 2 2 1 1 3 4 3 3 2 2 1 2 1 2 2 4 1 2 1 8 6 3 Designator ==================== R115 R116 R215 R216 C1 C103 C107 C120 C203 C207 C3 C4 0.1uF/100V/PPS C114 C214 0.1uF/250V/EB C105 C106 C205 C206 0.1uF/250V/EF C108 C110 C112 C208 C210 C212 0.22uF/100V/PPS C117 C217 C5 C6 1.15K,1% R107 R207 R210 100uF/16V C8 10K POT R104 11uH L100 L200 13.3K,1% R111 R211 150pF C102 1K R7 1K,1% R105 R205 R208 1N914 D105 D106 D205 D206 20K,1% R100 R101 R201 20OHM/5W R128 R228 R6 220OHM R112 R212 220pF C116 C216 237K,1% R3 261K,1% R4 R5 270pF C202 330uF/100V C109 C209 33pF C101 C201 390uF/50V C111 C113 C211 C213 4.7uF C200 47uF/25V C104 C204 49.9K,1% R200 5.6OHM/1W R114 R120 R125 R126 R214 R220 R225 R226 510K R102 R103 R118 R119 R218 R219 7.5K,1% R106 R206 R209 Part Type =============== 0.01OHM/1W 0.1uF Footprint =========== RLVR1RG2 0805 C0U22PPS10 C0U1MF10 C0U1MF10 C0U22PPS10 0805 C10UEL05 POTSTURN T106 0805 0805 0805 0805 1N914L 0805 PWR5WRT RES1W50 0805 0805 0805 0805 C330UEL10 0805 C100UEL06 C10UEL05 C10UEL05 0805 RES1W50 0805 0805 Part Field 1 =================== OHMITE 20% TOL. PANASONIC PANASONIC PANASONIC PANASONIC * PANASONIC BOURNS COIL WINDING SPEC * NPO 5% 5% * * XICON 5%, 1/4W NPO 5% * * NPO 5% PANASONIC NPO 5% PANASONIC PANASONIC PANASONIC * PANASONIC 5% TOL. * Part Field 2 ============ 12F010 * ECH-S1104JZ ECQ-E2104KB ECQ-E2104KF ECH-S1224JZ * ECA-1CHG101 3306P-1-103 T106-2 CORE * * * * * Part Field 3 =============== DK 12F010-ND * DK PS1104J-ND DK P10967-ND EF2104-ND DK PS1224J-ND * DK P5529-ND DK 3306P-103-ND 29TURNS / 16AWG * * * * * * 280-PRM5-20 * * * * DK P10783-ND * DK P10327-ND DK P5566-ND DK P5568-ND * P5.6W-1BK-ND * *
* * * * EEU-FC2A331S * EEU-FC1H391S ECA-1HHG4R7 ECA-1HHG220 * ERG-1SJ5R6 * *
Page 1
C:\LAYOUTS\TA3020\3020SUB3\BR3020_1.BOM 11:13:42 12-Jul-2001
1 1 1 1 2 1 1 1 2 2 16
715K,1% 8.25K,1% CON2INPT CON2LPWR CON4 CON6 FBEAD HDR2 HDR3 MURS120T3 NS
2 4 1
SCRWTERM STW34NB20 TA3020
R9 R1 J200 J1 J102 J202 J2 L1 J3 J4 J5 D102 D202 D104 D107 M100 M103 R113 R121 R213 R221 J101 J201 M101 M102 I1
D204 M200 R124 R224
D207 M203 R127 R227
0805 0805 CON2 CON2B BUSBAR1 PWRCON6 2512 GJMPR001 GJMP3001 SMB 1N914L
* * WALDOM WALDOM * * SPC/MULTICOMP * * MOTOROLA
* * 705-43-0001 22-23-2021 * * SPC5304 * * MURS120T3
* * DK WM4800-ND DK WM4200-ND * * Newark - 50N670 * * * *
M201 M202
SCRWTERM * * TO3P&220FLT ST MICROELECTRONICS * DIP48 TRIPATH *
* * *
1
2
3
4
5
6
D
VPP
D R215 0.01OHM/1W C210 C208 0.1uF/250V/EF 0.1uF/250V/EF M200 STW34NB20 D204 1N914 R213 10OHM/1W 2 R224 J202 M201 STW34NB20 CON4 10OHM/1W FB2 R225 L200 11uH AMPOUT2 C217 0.22uF/100V/PPS 2 C214 0.1uF/100V/PPS 1 C206 0.1uF/250V/EB 7 OCS2LP OCS1LP 42 C106 0.1uF/250V/EB 8 C205 0.1uF/250V/EB 9 C204 47uF/25V 220OHM C203 0.1uF D202 MURS120T3 10 VBOOT2 VNN 39
VNN
VNN C8 100uF/16V VN10 I1 1 VN10 LO1 48 R113 C107 0.1uF LO2 LO1COM 47 R124 3 LO2COM HO1COM 46 R118 510K 4 R218 510K 5 HO2 OCS1HN 44 R125 C105 0.1uF/250V/EB 6 OCS2LN OCS1HP 43 5.6OHM/1W 1 L100 11uH HO2COM HO1 45 5.6OHM/1W D105 1N914 R114 CON4 510OHM/1W FB1 J102 M101 STW34NB20 R119 510K 10OHM/1W D104 1N914 M100 STW34NB20
R115 0.01OHM/1W C108 0.1uF/250V/EF
VPP
C211 470uF/63V
C110 0.1uF/250V/EF
C111 470uF/63V
R219 C207 510K 0.1uF
5.6OHM/1W D205 1N914 R214
5.6OHM/1W
2
AMPOUT1 C114 0.1uF/100V/PPS C117 0.22uF/100V/PPS
M202 STW34NB20
D206 1N914 R220 10OHM/1W R212
D106 1N914 R120 R112 510OHM/1W D102 MURS120T3 C103 0.1uF 220OHM C104 47uF/25V
M102 STW34NB20
R228 20OHM/5W PGND2
OCS2HP
OCS1LN
41
R128 20OHM/5W PGND1
R226 C M203 STW34NB20 5.6OHM/1W D207 1N914 R221 C209 220uF/160V 10OHM/1W R227 5.6OHM/1W R106 FB1 C212 0.1uF/250V/EF 10.5K,1% C102 75pF
OCS2HN
VBOOT1
40
R126 5.6OHM/1W D107 1N914 R121 C M103 STW34NB20
V5
11 AGND OCRNT2 12
NC
NC
38 AGND
10OHM/1W R127 5.6OHM/1W OCRNT1
VNN
R216 0.01OHM/1W
C109 220uF/160V
R105 1K,1%
R116 0.01OHM/1W
VNN
C213 470uF/63V
OCR2
OCR1
37
R107 1.10K,1%
C112 0.1uF/250V/EF
FN1
C113 470uF/63V
13
FBKOUT1
NC
36 AGND
AGND
14
FBKGND1
V5
35
V5
BRIDGED OUTPUT C3 0.1uF C5 AMPOUT2 AGND J201 SCRWTERM OCRNT1 C116 220pF R111 12.3K,1% 20OHM/5W 0.22uF/100V/PPS 0.22uF/100V/PPS R6 C6 AMPOUT1 J101 SCRWTERM
HMUTE
V5
15
HMUTE
DGND
34
R206 FB2 10.5K,1% C202 180pF R209 PGND2 B 10.5K,1%
R205 1K,1%
FN2
16
FBKOUT2
OCR1
33
17 R207 1.10K,1% R208 1K,1% AGND
FP2
DCOMP
REF1
32
R1 8.25K,1% AGND
AGND OCRNT2 C216 220pF R211 12.3K,1%
VNN
18
FBKGND2
OCR2
31
R210 1.10K,1% AGND C200 J200 AGND 4.7uF
B R3 316K,1%
C4 0.1uF
19
BIASCAP
VNNSENSE
30 AGND
R200 49.9K,1%
AGND
IN2
20
INV2
VPPSENSE
29
VPP
R201 20K,1%
C201 33pF
VP2 21
R5 348K,1% OAOUT2 AGND 28 C1 AGND 0.1uF 22 BBM0 V5 27
V5
R9 953K,1%
VPP VN10 VNN
J2
J5 SET BBM0 T0 0 J4 SET BBM1 T0 0 R7 1K J3 MUTE REMOVE J3 SHUNT TO ENABLE MUTE
V5
R4 348K,1%
V5
CON6
23
BBM1
OAOUT1
26 C101 33pF R101 20K,1%
5V INPUT CONNECTOR J1 V5 R100 20K,1%
VP2
24
MUTE TA3020
INV1
25
IN1
AGND
AGND
L1 FBEAD 1 2
R103 510K
R102 510K C120 0.1uF
V5
OFFSET TRIM R104 10K POT
AGND
A
AGND
A
Title
TA3020 BRIDGED REFERENCE BOARD - 2 - 30V TO 48V
Size C Date: File: 1 2 3 4 5 12-Jul-2001 Sheet of C:\LAYOUTS\TA3020\3020SUB3\BR3020_2.SCH By: Drawn 6 Number Revision
3.0
C:\LAYOUTS\TA3020\3020SUB3\BR3020_2.BOM 11:11:54 12-Jul-2001
Bill of Material for Bridged RB-TA3020-2, Rev 3.0 Used ==== 4 8 2 4 6 4 3 3 1 1 6 2 2 1 1 3 8 3 3 2 2 2 1 2 2 1 4 2 1 8 Part Type =============== 0.01OHM/1W 0.1uF Designator ==================== R115 R116 R215 R216 C1 C103 C107 C120 C203 C207 C3 C4 0.1uF/100V/PPS C114 C214 0.1uF/250V/EB C105 C106 C205 C206 0.1uF/250V/EF C108 C110 C112 C208 C210 C212 0.22uF/100V/PPS C117 C217 C5 C6 1.10K,1% R107 R207 R210 10.5K,1% R106 R206 R209 100uF/16V C8 10K POT R104 10OHM/1W R113 R121 R213 R214 R220 R221 11uH L100 L200 12.3K,1% R111 R211 180pF C202 1K R7 1K,1% R105 R205 R208 1N914 D104 D105 D106 D107 D204 D205 D206 D207 20K,1% R100 R101 R201 20OHM/5W R128 R228 R6 220OHM R112 R212 220pF C116 C216 220uF/160V C109 C209 316K,1% R3 33pF C101 C201 348K,1% R4 R5 4.7uF C200 470uF/63V C111 C113 C211 C213 47uF/25V C104 C204 49.9K,1% R200 5.6OHM/1W R124 R125 R126 R127 R224 R225 R226 R227 Footprint =========== RLVR1RG2 0805 C0U22PPS10 C0U1MF10 C0U1MF10 C0U22PPS10 0805 0805 C10UEL05 POTSTURN RES1W50 T106 0805 0805 0805 0805 1N914L 0805 PWR5WRT RES1W50 0805 C330UEL10 0805 0805 0805 C10UEL05 C100UEL06 C10UEL05 0805 RES1W50 Part Field 1 =================== OHMITE 20% TOL. PANASONIC PANASONIC PANASONIC PANASONIC * * PANASONIC BOURNS PANASONIC COIL WINDING SPEC * NPO 5% 5% * Part Field 2 ============ 12F010 * ECH-S1104JZ ECQ-E2104KB ECQ-E2104KF ECH-S1224JZ * * ECA-1CHG101 3306P-1-103 ERG-1SJ5R6 T106-2 CORE * * * * Part Field 3 =============== DK 12F010-ND * DK PS1104J-ND DK P10967-ND EF2104-ND DK PS1224J-ND * * DK P5529-ND DK 3306P-103-ND P5.6W-1BK-ND 29TURNS / 16AWG * * * * * * 280-PRM5-20 * DK P5910-ND * * * DK P5566-ND DK P10352-ND DK P5568-ND * P5.6W-1BK-ND
* XICON 5%, 1/4W NPO 5% PANASONIC * NPO 5% * PANASONIC PANASONIC PANASONIC * PANASONIC
*
* EEU-EB2C221S * * * ECA-1HHG4R7 EEU-FC1J471 ECA-1HHG220 * ERG-1SJ5R6
Page 1
C:\LAYOUTS\TA3020\3020SUB3\BR3020_2.BOM 11:11:54 12-Jul-2001
6 2 1 1 1 1 1 2 1 1 1 2 2 2 8 1
510K 510OHM/1W 75pF 8.25K,1% 953K,1% CON2INPT CON2LPWR CON4 CON6 FBEAD HDR2 HDR3 MURS120T3 SCRWTERM STW34NB20 TA3020
R102 R103 R118 R119 R218 R219 R114 R120 C102 R1 R9 J200 J1 J102 J202 J2 L1 J3 J4 J5 D102 D202 J101 J201 M100 M101 M102 M103 M200 M201 M202 M203 I1
0805 RES1W50 0805 0805 0805 CON2 CON2B BUSBAR1 PWRCON6 2512 GJMPR001 GJMP3001 SMB SCRWTERM TO3P&220FLT DIP48
5% TOL. PANASONIC NPO 5% * * WALDOM WALDOM * * SPC/MULTICOMP * * MOTOROLA * ST MICROELECTRONICS TRIPATH
* ERG-1SJ5R6 * * * 705-43-0001 22-23-2021 * * SPC5304 * * MURS120T3 * * *
* P5.6W-1BK-ND * * * DK WM4800-ND DK WM4200-ND * * Newark - 50N670 * * * * * *
1
2
3
4
5
6
D
VPP
D R215 0.01OHM/1W C210 C208 0.1uF/250V/EF 0.1uF/250V/EF M200 STW34NB20 D204 1N914 R213 10OHM/1W 2 R224 J202 M201 STW34NB20 CON4 10OHM/1W FB2 R225 L200 11uH AMPOUT2 C217 0.22uF/250V 2 C214 0.1uF/100V/PPS 1 C206 0.1uF/250V/EB 7 OCS2LP OCS1LP 42 C106 0.1uF/250V/EB 8 C205 0.1uF/250V/EB 9 C204 47uF/25V 220OHM C203 0.1uF D202 MURS120T3 10 VBOOT2 VNN 39
VNN
VNN C8 100uF/16V VN10 I1 1 VN10 LO1 48 R113 C107 0.1uF LO2 LO1COM 47 R124 3 LO2COM HO1COM 46 R118 510K 4 R218 510K 5 HO2 OCS1HN 44 R125 C105 0.1uF/250V/EB 6 OCS2LN OCS1HP 43 5.6OHM/1W 1 L100 11uH HO2COM HO1 45 5.6OHM/1W D105 1N914 R114 CON4 10OHM/1W FB1 J102 M101 STW34NB20 R119 510K 10OHM/1W D104 1N914 M100 STW34NB20
R115 0.01OHM/1W C108 0.1uF/250V/EF
VPP
C211 470uF/63V
C110 0.1uF/250V/EF
C111 470uF/63V
R219 C207 510K 0.1uF
5.6OHM/1W D205 1N914 R214
5.6OHM/1W
2
AMPOUT1 C114 0.1uF/100V/PPS C117 0.22uF/250V
M202 STW34NB20
D206 1N914 R220 10OHM/1W R212
D106 1N914 R120 R112 10OHM/1W D102 MURS120T3 C103 0.1uF 220OHM C104 47uF/25V
M102 STW34NB20
R228 20OHM/5W PGND2
OCS2HP
OCS1LN
41
R128 20OHM/5W PGND1
R226 C M203 STW34NB20 5.6OHM/1W D207 1N914 R221 C209 220uF/160V 10OHM/1W R227 5.6OHM/1W R106 FB1 C212 0.1uF/250V/EF 15K,1% C102 62pF
OCS2HN
VBOOT1
40
R126 5.6OHM/1W D107 1N914 R121 C M103 STW34NB20
V5
11 AGND OCRNT2 12
NC
NC
38 AGND
10OHM/1W R127 5.6OHM/1W OCRNT1
VNN
R216 0.01OHM/1W
C109 220uF/160V
R105 1K,1%
R116 0.01OHM/1W
VNN
C213 470uF/63V
OCR2
OCR1
37
R107 1.07K,1%
C112 0.1uF/250V/EF
FN1
C113 470uF/63V
13
FBKOUT1
NC
36 AGND
AGND
14
FBKGND1
V5
35
V5
BRIDGED OUTPUT C3 0.1uF C5 AMPOUT2 AGND J201 SCRWTERM OCRNT1 C116 220pF R111 11.3K,1% 20OHM/5W 0.22uF/250V 0.22uF/250V R6 C6 AMPOUT1 J101 SCRWTERM
HMUTE
V5
15
HMUTE
DGND
34
R206 FB2 15K,1% C202 150pF R209 PGND2 B 15K,1%
R205 1K,1%
FN2
16
FBKOUT2
OCR1
33
17 R207 1.07K,1% R208 1K,1% AGND
FP2
DCOMP
REF1
32
R1 8.25K,1% AGND
AGND OCRNT2 C216 220pF R211 11.3K,1%
VNN
18
FBKGND2
OCR2
31
R210 1.07K,1% AGND C200 J200 AGND 4.7uF
B R3 422K,1%
C4 0.1uF
19
BIASCAP
VNNSENSE
30 AGND
R200 49.9K,1%
AGND
IN2
20
INV2
VPPSENSE
29
VPP
R201 20K,1%
C201 33pF
VP2 21
R5 464K,1% OAOUT2 AGND 28 C1 AGND 0.1uF 22 BBM0 V5 27
V5
R9 1.27M,1%
VPP VN10 VNN
J2
J5 SET BBM0 T0 0 J4 SET BBM1 T0 0 R7 1K J3 MUTE REMOVE J3 SHUNT TO ENABLE MUTE
V5
R4 464K,1%
V5
CON6
23
BBM1
OAOUT1
26 C101 33pF R101 20K,1%
5V INPUT CONNECTOR J1 V5 R100 20K,1%
VP2
24
MUTE TA3020
INV1
25
IN1
AGND
AGND
L1 FBEAD 1 2
R103 510K
R102 510K C120 0.1uF
V5
OFFSET TRIM R104 10K POT
AGND
A
AGND
A
Title
TA3020 BRIDGED REFERENCE BOARD - 3 - 40V TO 64V
Size C Date: File: 1 2 3 4 5 12-Jul-2001 Sheet of C:\LAYOUTS\TA3020\3020SUB3\BR3020_3.SCH By: Drawn 6 Number Revision
3.0
C:\LAYOUTS\TA3020\3020SUB3\BR3020_3.BOM 11:10:31 12-Jul-2001
Bill of Material for Bridged RB-TA3020-3, Rev 3.0 Used ==== 4 8 2 4 6 4 3 1 1 1 8 2 2 1 3 1 3 8 3 3 2 2 2 2 1 1 2 4 2 1 8 Part Type ============== 0.01OHM/1W 0.1uF Designator ==================== R115 R116 R215 R216 C1 C103 C107 C120 C203 C207 C3 C4 0.1uF/100V/PPS C114 C214 0.1uF/250V/EB C105 C106 C205 C206 0.1uF/250V/EF C108 C110 C112 C208 C210 C212 0.22uF/250V C117 C217 C5 C6 1.07K,1% R107 R207 R210 1.27M,1% R9 100uF/16V C8 10K POT R104 10OHM/1W R113 R114 R120 R121 R213 R214 R220 R221 11.3K,1% R111 R211 11uH L100 L200 150pF C202 15K,1% R106 R206 R209 1K R7 1K,1% R105 R205 R208 1N914 D104 D105 D106 D107 D204 D205 D206 D207 20K,1% R100 R101 R201 20OHM/5W R128 R228 R6 220OHM R112 R212 220pF C116 C216 220uF/160V C109 C209 33pF C101 C201 4.7uF C200 422K,1% R3 464K,1% R4 R5 470uF/63V C111 C113 C211 C213 47uF/25V C104 C204 49.9K,1% R200 5.6OHM/1W R124 R125 R126 R127 Footprint =========== RLVR1RG2 0805 C0U22PPS10 C0U1MF10 C0U1MF10 C0U22PPS10 0805 0805 C10UEL05 POTSTURN RES1W50 0805 T106 0805 0805 0805 0805 1N914L 0805 PWR5WRT RES1W50 0805 C330UEL10 0805 C10UEL05 0805 0805 C100UEL06 C10UEL05 0805 RES1W50 Part Field 1 =================== OHMITE 20% TOL. PANASONIC PANASONIC PANASONIC PANASONIC * * PANASONIC BOURNS PANASONIC * COIL WINDING SPEC NPO 5% * 5% * Part Field 2 ============ 12F010 * ECH-S1104JZ ECQ-E2104KB ECQ-E2104KF ECW-F2224JB * * ECA-1CHG101 3306P-1-103 ERG-1SJ5R6 * T157-2 CORE * * * * Part Field 3 =============== DK 12F010-ND * DK PS1104J-ND DK P10967-ND EF2104-ND DK PF2224-ND * * DK P5529-ND DK 3306P-103-ND P10W-1BK-ND * 28TURNS / 14AWG * * * * * * 280-PRM5-20 * DK P5910-ND * DK P5566-ND * * DK P10352-ND DK P5568-ND * P5.6W-1BK-ND
* XICON 5%, 1/4W NPO 5% PANASONIC NPO 5% PANASONIC * * PANASONIC PANASONIC * PANASONIC
*
* EEU-EB2C221S * ECA-1HHG4R7 * * EEU-FC1J471 ECA-1HHG220 * ERG-1SJ5R6
Page 1
C:\LAYOUTS\TA3020\3020SUB3\BR3020_3.BOM 11:10:31 12-Jul-2001
6 1 1 1 1 2 1 1 1 2 2 2 8 1
510K 62pF 8.25K,1% CON2INPT CON2LPWR CON4 CON6 FBEAD HDR2 HDR3 MURS120T3 SCRWTERM STW34NB20 TA3020
R224 R225 R102 R103 R218 R219 C102 R1 J200 J1 J102 J202 J2 L1 J3 J4 J5 D102 D202 J101 J201 M100 M101 M200 M201 I1
R226 R227 R118 R119
0805 0805 0805 CON2 CON2B BUSBAR1 PWRCON6 2512 GJMPR001 GJMP3001 SMB SCRWTERM TO3P&220FLT DIP48
5% TOL. NPO 5% * WALDOM WALDOM * * SPC/MULTICOMP * * MOTOROLA * ST MICROELECTRONICS TRIPATH
* * * 705-43-0001 22-23-2021 * * SPC5304 * * MURS120T3 * * *
* * * DK WM4800-ND DK WM4200-ND * * Newark - 50N670 * * * * * *
M102 M103 M202 M203


▲Up To Search▲   

 
Price & Availability of BRIDGED-RB-TA3020

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X